

pytest-qt

	Repository

	GitHub [https://github.com/pytest-dev/pytest-qt]

	Version

	2.4.1

	License

	MIT [https://opensource.org/licenses/MIT]

	Author

	Bruno Oliveira

	Introduction
	Requirements

	Installation

	Development

	Versioning

	Tutorial

	Qt Logging Capture
	Disabling Logging Capture

	qtlog fixture

	Log Formatting

	Automatically failing tests when logging messages are emitted

	waitSignal: Waiting for threads, processes, etc.
	raising parameter

	qt_wait_signal_raising ini option

	check_params_cb parameter

	Getting arguments of the emitted signal

	waitSignals

	Making sure a given signal is not emitted

	waitUntil: Waiting for arbitrary conditions

	Exceptions in virtual methods
	Disabling the automatic exception hook

	Model Tester

	A note about QApplication.exit()

	A note about pyqt4v2

	A note about Modal Dialogs
	Simple Dialogs

	Custom Dialogs

	Troubleshooting
	tox: InvocationError without further information

	xvfb: AssertionError, TimeoutError when using waitUntil, waitExposed and UI events.

	Reference
	QtBot

	TimeoutError

	SignalBlocker

	MultiSignalBlocker

	SignalEmittedError

	Record

	qapp fixture

	Changelog
	2.4.1 (2018-06-14)

	2.4.0

	2.3.2

	2.3.1

	2.3.0

	2.2.1

	2.2.0

	2.1.2

	2.1.1

	2.1

	2.0

	1.11.0

	1.10.0

	1.9.0

	1.8.0

	1.7.0

	1.6.0

	1.5.1

	1.5.0

	1.4.0

	1.3.0

	1.2.3

	1.2.2

	1.2.1

	1.2.0

	1.1.1

	1.1.0

	1.0.2

	1.0.1

	1.0.0

Introduction

pytest-qt is a pytest [http://www.pytest.org] plugin that provides fixtures to help programmers write tests for
PySide [https://pypi.python.org/pypi/PySide] and PyQt [http://www.riverbankcomputing.com/software/pyqt].

The main usage is to use the qtbot fixture, which provides methods to simulate user
interaction, like key presses and mouse clicks:

def test_hello(qtbot):
 widget = HelloWidget()
 qtbot.addWidget(widget)

 # click in the Greet button and make sure it updates the appropriate label
 qtbot.mouseClick(window.button_greet, QtCore.Qt.LeftButton)

 assert window.greet_label.text() == 'Hello!'

Requirements

Python 2.7 or later, including Python 3.4+.

Requires pytest version 2.7 or later.

Works with either PyQt5, PyQt4, PySide or PySide2, picking whichever
is available on the system giving preference to the first one installed in
this order:

	PySide2

	PyQt5

	PySide

	PyQt4

To force a particular API, set the configuration variable qt_api in your pytest.ini file to
pyqt5, pyside, pyside2, pyqt4 or pyqt4v2. pyqt4v2 sets the PyQt4
API to version 2 [http://pyqt.sourceforge.net/Docs/PyQt4/incompatible_apis.html].

[pytest]
qt_api=pyqt5

Alternatively, you can set the PYTEST_QT_API environment variable to the
same values described above (the environment variable wins over the
configuration if both are set).

From pytest-qt version 2 the behaviour of pyqt4v2 has changed, as
explained in A note about pyqt4v2.

Installation

The package may be installed by running:

pip install pytest-qt

Or alternatively, download the package from pypi [http://pypi.python.org/pypi/pytest-qt/], extract and execute:

python setup.py install

Both methods will automatically register it for usage in pytest.

Development

If you intend to develop pytest-qt itself, use virtualenv [https://virtualenv.readthedocs.io/] to
activate a new fresh environment and execute:

git clone https://github.com/pytest-dev/pytest-qt.git
cd pytest-qt
pip install -e . # or python setup.py develop
pip install pyside # or pyqt4/pyqt5

If you also intend to build the documentation locally, you can make sure to have
all the needed dependences executing:

pip install -e .[doc]

Versioning

This projects follows semantic versioning [http://semver.org/].

Tutorial

pytest-qt registers a new fixture [http://pytest.org/latest/fixture.html] named qtbot, which acts as bot in the sense
that it can send keyboard and mouse events to any widgets being tested. This way, the programmer
can simulate user interaction while checking if GUI controls are behaving in the expected manner.

To illustrate that, consider a widget constructed to allow the user to find files in a given
directory inside an application.

[image: _images/find_files_dialog.png]
It is a very simple dialog, where the user enters a standard file mask, optionally enters file text
to search for and a button to browse for the desired directory. Its source code is available here [https://github.com/nicoddemus/PySide-Examples/blob/master/examples/dialogs/findfiles.py],

To test this widget’s basic functionality, create a test function:

def test_basic_search(qtbot, tmpdir):
 '''
 test to ensure basic find files functionality is working.
 '''
 tmpdir.join('video1.avi').ensure()
 tmpdir.join('video1.srt').ensure()

 tmpdir.join('video2.avi').ensure()
 tmpdir.join('video2.srt').ensure()

Here the first parameter indicates that we will be using a qtbot fixture to control our widget.
The other parameter is pytest’s standard tmpdir [http://pytest.org/latest/tmpdir.html] that we use to create some files that will be
used during our test.

Now we create the widget to test and register it:

window = Window()
window.show()
qtbot.addWidget(window)

Tip

Registering widgets is not required, but recommended because it will ensure those widgets get
properly closed after each test is done.

Now we use qtbot methods to simulate user interaction with the dialog:

window.fileComboBox.clear()
qtbot.keyClicks(window.fileComboBox, '*.avi')

window.directoryComboBox.clear()
qtbot.keyClicks(window.directoryComboBox, str(tmpdir))

The method keyClicks is used to enter text in the editable combo box, selecting the desired mask
and directory.

We then simulate a user clicking the button with the mouseClick method:

qtbot.mouseClick(window.findButton, QtCore.Qt.LeftButton)

Once this is done, we inspect the results widget to ensure that it contains the expected files we
created earlier:

assert window.filesTable.rowCount() == 2
assert window.filesTable.item(0, 0).text() == 'video1.avi'
assert window.filesTable.item(1, 0).text() == 'video2.avi'

Qt Logging Capture

New in version 1.4.

Qt features its own logging mechanism through qInstallMessageHandler
(qInstallMsgHandler on Qt4) and qDebug, qWarning, qCritical
functions. These are used by Qt to print warning messages when internal errors
occur.

pytest-qt automatically captures these messages and displays them when a
test fails, similar to what pytest does for stderr and stdout and
the pytest-catchlog [https://github.com/eisensheng/pytest-catchlog] plugin.
For example:

from pytestqt.qt_compat import qWarning

def do_something():
 qWarning('this is a WARNING message')

def test_foo():
 do_something()
 assert 0

$ py.test test.py -q
F
================================== FAILURES ===================================
_________________________________ test_types __________________________________

 def test_foo():
 do_something()
> assert 0
E assert 0

test.py:8: AssertionError
---------------------------- Captured Qt messages -----------------------------
QtWarningMsg: this is a WARNING message
1 failed in 0.01 seconds

Disabling Logging Capture

Qt logging capture can be disabled altogether by passing the --no-qt-log
to the command line, which will fallback to the default Qt bahavior of printing
emitted messages directly to stderr:

py.test test.py -q --no-qt-log
F
================================== FAILURES ===================================
_________________________________ test_types __________________________________

 def test_foo():
 do_something()
> assert 0
E assert 0

test.py:8: AssertionError
---------------------------- Captured stderr call -----------------------------
this is a WARNING message

qtlog fixture

pytest-qt also provides a qtlog fixture that can used
to check if certain messages were emitted during a test:

def do_something():
 qWarning('this is a WARNING message')

def test_foo(qtlog):
 do_something()
 emitted = [(m.type, m.message.strip()) for m in qtlog.records]
 assert emitted == [(QtWarningMsg, 'this is a WARNING message')]

qtlog.records is a list of Record
instances.

Logging can also be disabled on a block of code using the qtlog.disabled()
context manager, or with the pytest.mark.no_qt_log mark:

def test_foo(qtlog):
 with qtlog.disabled():
 # logging is disabled within the context manager
 do_something()

@pytest.mark.no_qt_log
def test_bar():
 # logging is disabled for the entire test
 do_something()

Keep in mind that when logging is disabled,
qtlog.records will always be an empty list.

Log Formatting

The output format of the messages can also be controlled by using the
--qt-log-format command line option, which accepts a string with standard
{} formatting which can make use of attribute interpolation of the record
objects:

$ py.test test.py --qt-log-format="{rec.when} {rec.type_name}: {rec.message}"

Keep in mind that you can make any of the options above the default
for your project by using pytest’s standard addopts option in you
pytest.ini file:

[pytest]
qt_log_format = {rec.when} {rec.type_name}: {rec.message}

Automatically failing tests when logging messages are emitted

Printing messages to stderr is not the best solution to notice that
something might not be working as expected, specially when running in a
continuous integration server where errors in logs are rarely noticed.

You can configure pytest-qt to automatically fail a test if it emits
a message of a certain level or above using the qt_log_level_fail ini
option:

[pytest]
qt_log_level_fail = CRITICAL

With this configuration, any test which emits a CRITICAL message or above
will fail, even if no actual asserts fail within the test:

from pytestqt.qt_compat import qCritical

def do_something():
 qCritical('WM_PAINT failed')

def test_foo(qtlog):
 do_something()

>py.test test.py --color=no -q
F
================================== FAILURES ===================================
__________________________________ test_foo ___________________________________
test.py:5: Failure: Qt messages with level CRITICAL or above emitted
---------------------------- Captured Qt messages -----------------------------
QtCriticalMsg: WM_PAINT failed

The possible values for qt_log_level_fail are:

	NO: disables test failure by log messages.

	DEBUG: messages emitted by qDebug function or above.

	WARNING: messages emitted by qWarning function or above.

	CRITICAL: messages emitted by qCritical function only.

If some failures are known to happen and considered harmless, they can
be ignored by using the qt_log_ignore ini option, which
is a list of regular expressions matched using re.search:

[pytest]
qt_log_level_fail = CRITICAL
qt_log_ignore =
 WM_DESTROY.*sent
 WM_PAINT failed

py.test test.py --color=no -q
.
1 passed in 0.01 seconds

Messages which do not match any of the regular expressions
defined by qt_log_ignore make tests fail as usual:

def do_something():
 qCritical('WM_PAINT not handled')
 qCritical('QObject: widget destroyed in another thread')

def test_foo(qtlog):
 do_something()

py.test test.py --color=no -q
F
================================== FAILURES ===================================
__________________________________ test_foo ___________________________________
test.py:6: Failure: Qt messages with level CRITICAL or above emitted
---------------------------- Captured Qt messages -----------------------------
QtCriticalMsg: WM_PAINT not handled (IGNORED)
QtCriticalMsg: QObject: widget destroyed in another thread

You can also override the qt_log_level_fail setting and extend
qt_log_ignore patterns from pytest.ini in some tests by using a mark
with the same name:

def do_something():
 qCritical('WM_PAINT not handled')
 qCritical('QObject: widget destroyed in another thread')

@pytest.mark.qt_log_level_fail('CRITICAL')
@pytest.mark.qt_log_ignore('WM_DESTROY.*sent', 'WM_PAINT failed')
def test_foo(qtlog):
 do_something()

If you would like to override the list of ignored patterns instead, pass
extend=False to the qt_log_ignore mark:

@pytest.mark.qt_log_ignore('WM_DESTROY.*sent', extend=False)
def test_foo(qtlog):
 do_something()

waitSignal: Waiting for threads, processes, etc.

New in version 1.2.

If your program has long running computations running in other threads or
processes, you can use qtbot.waitSignal
to block a test until a signal is emitted (such as QThread.finished) or a
timeout is reached. This makes it easy to write tests that wait until a
computation running in another thread or process is completed before
ensuring the results are correct:

def test_long_computation(qtbot):
 app = Application()

 # Watch for the app.worker.finished signal, then start the worker.
 with qtbot.waitSignal(app.worker.finished, timeout=10000) as blocker:
 blocker.connect(app.worker.failed) # Can add other signals to blocker
 app.worker.start()
 # Test will block at this point until either the "finished" or the
 # "failed" signal is emitted. If 10 seconds passed without a signal,
 # SignalTimeoutError will be raised.

 assert_application_results(app)

raising parameter

New in version 1.4.

Changed in version 2.0.

You can pass raising=False to avoid raising a
qtbot.SignalTimeoutError if the timeout is
reached before the signal is triggered:

def test_long_computation(qtbot):
 ...
 with qtbot.waitSignal(app.worker.finished, raising=False) as blocker:
 app.worker.start()

 assert_application_results(app)

 # qtbot.SignalTimeoutError is not raised, but you can still manually
 # check whether the signal was triggered:
 assert blocker.signal_triggered, "process timed-out"

qt_wait_signal_raising ini option

New in version 1.11.

Changed in version 2.0.

The qt_wait_signal_raising ini option can be used to override the default
value of the raising parameter of the qtbot.waitSignal and
qtbot.waitSignals functions when omitted:

[pytest]
qt_wait_signal_raising = false

Calls which explicitly pass the raising parameter are not affected.

check_params_cb parameter

New in version 2.0.

If the signal has parameters you want to compare with expected values, you can pass
check_params_cb=some_callable that compares the provided signal parameters to some expected parameters.
It has to match the signature of signal (just like a slot function would) and return True if
parameters match, False otherwise.

def test_status_100(status):
 """Return true if status has reached 100%."""
 return status == 100

def test_status_complete(qtbot):
 app = Application()

 # the following raises if the worker's status signal (which has an int parameter) wasn't raised
 # with value=100 within the default timeout
 with qtbot.waitSignal(app.worker.status, raising=True, check_params_cb=test_status_100) as blocker:
 app.worker.start()

Getting arguments of the emitted signal

New in version 1.10.

The arguments emitted with the signal are available as the args attribute
of the blocker:

def test_signal(qtbot):
 ...
 with qtbot.waitSignal(app.got_cmd) as blocker:
 app.listen()
 assert blocker.args == ['test']

Signals without arguments will set args to an empty list. If the time out
is reached instead, args will be None.

Getting all arguments of non-matching arguments

New in version 2.1.

When using the check_params_cb parameter, it may happen that the provided signal is received multiple times with
different parameter values, which may or may not match the requirements of the callback.
all_args then contains the list of signal parameters (as tuple) in the order they were received.

waitSignals

New in version 1.4.

If you have to wait until all signals in a list are triggered, use
qtbot.waitSignals, which receives
a list of signals instead of a single signal. As with
qtbot.waitSignal, it also supports
the raising parameter:

def test_workers(qtbot):
 workers = spawn_workers()
 with qtbot.waitSignals([w.finished for w in workers]):
 for w in workers:
 w.start()

 # this will be reached after all workers emit their "finished"
 # signal or a qtbot.SignalTimeoutError will be raised
 assert_application_results(app)

check_params_cbs parameter

New in version 2.0.

Corresponding to the check_params_cb parameter of waitSignal you can use the check_params_cbs
parameter to check whether one or more of the provided signals are emitted with expected parameters.
Provide a list of callables, each matching the signature of the corresponding signal
in signals (just like a slot function would). Like for waitSignal, each callable has to
return True if parameters match, False otherwise.
Instead of a specific callable, None can be provided, to disable parameter checking for the
corresponding signal.
If the number of callbacks doesn’t match the number of signals ValueError will be raised.

The following example shows that the app.worker.status signal has to be emitted with values 50 and
100, and the app.worker.finished signal has to be emitted too (for which no signal parameter
evaluation takes place).

def test_status_100(status):
 """Return true if status has reached 100%."""
 return status == 100

def test_status_50(status):
 """Return true if status has reached 50%."""
 return status == 50

def test_status_complete(qtbot):
 app = Application()

 signals = [app.worker.status, app.worker.status, app.worker.finished]
 callbacks = [test_status_50, test_status_100, None]
 with qtbot.waitSignals(signals, raising=True, check_params_cbs=callbacks) as blocker:
 app.worker.start()

order parameter

New in version 2.0.

By default a test using qtbot.waitSignals completes successfully if all signals in signals
are emitted, irrespective of their exact order. The order parameter can be set to "strict"
to enforce strict signal order.
Exemplary, this means that blocker.signal_triggered will be False if waitSignals expects
the signals [a, b] but the sender emitted signals [a, a, b].

Note

The tested component can still emit signals unknown to the blocker. E.g.
blocker.waitSignals([a, b], raising=True, order="strict") won’t raise if the signal-sender
emits signals [a, c, b], as c is not part of the observed signals.

A third option is to set order="simple" which is like “strict”, but signals may be emitted
in-between the provided ones, e.g. if the expected signals are [a, b, c] and the sender
actually emits [a, a, b, a, c], the test completes successfully (it would fail with order="strict").

Getting emitted signals and arguments

New in version 2.1.

To determine which of the expected signals were emitted during a wait() you can use
blocker.all_signals_and_args which contains a list of
wait_signal.SignalAndArgs objects, indicating the signals (and their arguments)
in the order they were received.

Making sure a given signal is not emitted

New in version 1.11.

If you want to ensure a signal is not emitted in a given block of code, use
the qtbot.assertNotEmitted
context manager:

def test_no_error(qtbot):
 ...
 with qtbot.assertNotEmitted(app.worker.error):
 app.worker.start()

waitUntil: Waiting for arbitrary conditions

New in version 2.0.

Sometimes your tests need to wait a certain condition which does not trigger a signal, for example
that a certain control gained focus or a QListView has been populated with all items.

For those situations you can use qtbot.waitUntil to
wait until a certain condition has been met or a timeout is reached. This is specially important
in X window systems due to their asynchronous nature, where you can’t rely on the fact that the
result of an action will be immediately available.

For example:

def test_validate(qtbot):
 window = MyWindow()
 window.edit.setText('not a number')
 # after focusing, should update status label
 window.edit.setFocus()
 assert window.status.text() == 'Please input a number'

The window.edit.setFocus() may not be processed immediately, only in a future event loop, which
might lead to this test to work sometimes and fail in others (a flaky test).

A better approach in situations like this is to use qtbot.waitUntil with a callback with your
assertion:

def test_validate(qtbot):
 window = MyWindow()
 window.edit.setText('not a number')
 # after focusing, should update status label
 window.edit.setFocus()
 def check_label():
 assert window.status.text() == 'Please input a number'
 qtbot.waitUntil(check_label)

qtbot.waitUntil will periodically call check_label until it no longer raises
AssertionError or a timeout is reached. If a timeout is reached, the last assertion error
re-raised and the test will fail:

_ _
 def check_label():
> assert window.status.text() == 'Please input a number'
E assert 'OK' == 'Please input a number'
E - OK
E + Please input a number

A second way to use qtbot.waitUntil is to pass a callback which returns True when the
condition is met or False otherwise. It is usually terser than using a separate callback with
assert statement, but it produces a generic message when it fails because it can’t make
use of pytest’s assertion rewriting:

def test_validate(qtbot):
 window = MyWindow()
 window.edit.setText('not a number')
 # after focusing, should update status label
 window.edit.setFocus()
 qtbot.waitUntil(lambda: window.edit.hasFocus())
 assert window.status.text() == 'Please input a number'

Exceptions in virtual methods

New in version 1.1.

It is common in Qt programming to override virtual C++ methods to customize
behavior, like listening for mouse events, implement drawing routines, etc.

Fortunately, both PyQt and PySide support overriding this virtual methods
naturally in your python code:

class MyWidget(QWidget):

 # mouseReleaseEvent
 def mouseReleaseEvent(self, ev):
 print('mouse released at: %s' % ev.pos())

This works fine, but if python code in Qt virtual methods raise an exception
PyQt4 and PySide will just print the exception traceback to standard
error, since this method is called deep within Qt’s event loop handling and
exceptions are not allowed at that point. In PyQt5.5+, exceptions in
virtual methods will by default call abort(), which will crash the
interpreter.

This might be surprising for python users which are used to exceptions
being raised at the calling point: for example, the following code will just
print a stack trace without raising any exception:

class MyWidget(QWidget):

 def mouseReleaseEvent(self, ev):
 raise RuntimeError('unexpected error')

w = MyWidget()
QTest.mouseClick(w, QtCore.Qt.LeftButton)

To make testing Qt code less surprising, pytest-qt automatically
installs an exception hook which captures errors and fails tests when exceptions
are raised inside virtual methods, like this:

E Failed: Qt exceptions in virtual methods:
E __
E File "x:\pytest-qt\pytestqt_tests\test_exceptions.py", line 14, in event
E raise RuntimeError('unexpected error')
E
E RuntimeError: unexpected error

Disabling the automatic exception hook

You can disable the automatic exception hook on individual tests by using a
qt_no_exception_capture marker:

@pytest.mark.qt_no_exception_capture
def test_buttons(qtbot):
 ...

Or even disable it for your entire project in your pytest.ini file:

[pytest]
qt_no_exception_capture = 1

This might be desirable if you plan to install a custom exception hook.

Note

Starting with PyQt5.5, exceptions raised during virtual methods will
actually trigger an abort(), crashing the Python interpreter. For this
reason, disabling exception capture in PyQt5.5+ is not recommended
unless you install your own exception hook.

Model Tester

New in version 2.0.

pytest-qt includes a fixture that helps testing
QAbstractItemModel [http://doc.qt.io/qt-5/qabstractitemmodel.html] implementations. The implementation is copied
from the C++ code as described on the Qt Wiki [http://wiki.qt.io/Model_Test],
and it continuously checks a model as it changes, helping to verify the state
and catching many common errors the moment they show up.

Some of the conditions caught include:

	Verifying X number of rows have been inserted in the correct place after the signal rowsAboutToBeInserted() says X rows will be inserted.

	The parent of the first index of the first row is a QModelIndex()

	Calling index() twice in a row with the same values will return the same QModelIndex

	If rowCount() says there are X number of rows, model test will verify that is true.

	Many possible off by one bugs

	hasChildren() returns true if rowCount() is greater then zero.

	and many more…

To use it, create an instance of your model implementation, fill it with some
items and call qtmodeltester.check:

def test_standard_item_model(qtmodeltester):
 model = QStandardItemModel()
 items = [QStandardItem(str(i)) for i in range(4)]
 model.setItem(0, 0, items[0])
 model.setItem(0, 1, items[1])
 model.setItem(1, 0, items[2])
 model.setItem(1, 1, items[3])
 qtmodeltester.check(model)

If the tester finds a problem the test will fail with an assert pinpointing
the issue.

The following attribute may influence the outcome of the check depending
on your model implementation:

	data_display_may_return_none (default: False): While you can
technically return None (or an invalid QVariant) from data()
for QtCore.Qt.DisplayRole, this usually is a sign of
a bug in your implementation. Set this variable to True if this really
is OK in your model.

The source code was ported from modeltest.cpp [http://code.qt.io/cgit/qt/qtbase.git/tree/tests/auto/other/modeltest/modeltest.cpp] by Florian Bruhin [https://github.com/The-Compiler], many
thanks!

A note about QApplication.exit()

Some pytest-qt features, most notably waitSignal and waitSignals,
depend on the Qt event loop being active. Calling QApplication.exit()
from a test will cause the main event loop and auxiliary event loops to
exit and all subsequent event loops to fail to start. This is a problem if some
of your tests call an application functionality that calls
QApplication.exit().

One solution is to monkeypatch QApplication.exit() in such tests to ensure
it was called by the application code but without effectively calling it.

For example:

def test_exit_button(qtbot, monkeypatch):
 exit_calls = []
 monkeypatch.setattr(QApplication, 'exit', lambda: exit_calls.append(1))
 button = get_app_exit_button()
 qtbot.click(button)
 assert exit_calls == [1]

Or using the mock package:

def test_exit_button(qtbot):
 with mock.patch.object(QApplication, 'exit'):
 button = get_app_exit_button()
 qtbot.click(button)
 assert QApplication.exit.call_count == 1

A note about pyqt4v2

Starting with pytest-qt version 2.0, PyQt or PySide are lazily
loaded when first needed instead of at pytest startup. This usually means
pytest-qt will import PyQt or PySide when the tests actually start
running, well after conftest.py files and other plugins have been imported.
This can lead to some unexpected behaviour if pyqt4v2 is set.

If the conftest.py files, either directly or indirectly, set the API version
to 2 and import PyQt4, one of the following cases can happen:

	if all the available types are set to version 2, then using pyqt4 or
pyqt4v2 is equivalent

	if only some of the types set to version 2, using pyqt4v2 will make pytest
to fail with an error similar to:

INTERNALERROR> sip.setapi("QDate", 2)
INTERNALERROR> ValueError: API 'QDate' has already been set to version 1

If this is the case, use pyqt4.

If the API is set in the test functions or in the code imported by them, then
the new behaviour is indistinguishable from the old one and pyqt4v2 must be
used to avoid errors if version 2 is used.

A note about Modal Dialogs

Simple Dialogs

For QMessageBox.question one approach is to mock the function using the monkeypatch [https://docs.pytest.org/en/latest/monkeypatch.html] fixture:

def test_Qt(qtbot, monkeypatch):
 simple = Simple()
 qtbot.addWidget(simple)

 monkeypatch.setattr(QMessageBox, 'question', lambda *args: QMessageBox.Yes)
 simple.query()
 assert simple.answer

Custom Dialogs

Suppose you have a custom dialog that asks the user for their name and age, and a form
that uses it. One approach is to add a convenience function that also has the nice
benefit of making testing easier, like this:

class AskNameAndAgeDialog(QDialog):
...
 @classmethod
 def ask(cls, text, parent):
 dialog = cls(parent)
 dialog.text.setText(text)
 if dialog.exec_() == QDialog.Accepted:
 return dialog.getName(), dialog.getAge()
 else:
 return None, None

This allows clients of the dialog to use it this way:

name, age = AskNameAndAgeDialog.ask("Enter name and age because of bananas:", parent)
if name is not None:
 # use name and age for bananas

And now it is also easy to mock AskNameAndAgeDialog.ask when testing the form:

def test_form_registration(qtbot, monkeypatch):
 form = RegistrationForm()

 monkeypatch.setattr(AskNameAndAgeDialog, 'ask', classmethod(lambda *args: ('Jonh', 30)))
 qtbot.click(form.enter_info())
 # calls AskNameAndAgeDialog.ask
 # test that the rest of the form correctly behaves as if
 # user entered "Jonh" and 30 as name and age

Troubleshooting

tox: InvocationError without further information

It might happen that your tox run finishes abruptly without any useful information, e.g.:

ERROR: InvocationError:
'/path/to/project/.tox/py36/bin/python setup.py test --addopts --doctest-modules'
___ summary _____
ERROR: py36: commands failed

pytest-qt needs a DISPLAY to run, otherwise Qt calls abort() and the process crashes immediately.

One solution is to use the pytest-xvfb [https://pypi.python.org/pypi/pytest-xvfb/] plugin which takes care of the grifty details automatically, starting up a virtual framebuffer service, initializing variables, etc. This is the recommended solution if you are running in CI servers without a GUI, for example in Travis or CircleCI.

Alternatively, tox users may edit tox.ini to allow the relevant variables to be passed to the underlying
pytest invocation:

[testenv]
passenv = DISPLAY XAUTHORITY

Note that this solution will only work in boxes with a GUI.

More details can be found in issue #170 [https://github.com/pytest-dev/pytest-qt/issues/170].

xvfb: AssertionError, TimeoutError when using waitUntil, waitExposed and UI events.

When using xvfb or equivalent make sure to have a window manager running otherwise UI events will not work properly.

If you are running your code on Travis-CI make sure that your .travis.yml has the following content:

sudo: required

before_install:
 - sudo apt-get update
 - sudo apt-get install -y xvfb herbstluftwm

install:
 - "export DISPLAY=:99.0"
 - "/sbin/start-stop-daemon --start --quiet --pidfile /tmp/custom_xvfb_99.pid --make-pidfile --background --exec /usr/bin/Xvfb -- :99 -screen 0 1920x1200x24 -ac +extension GLX +render -noreset"
 - sleep 3

before_script:
 - "herbstluftwm &"
 - sleep 1

More details can be found in issue #206 [https://github.com/pytest-dev/pytest-qt/issues/206].

Reference

QtBot

	
class pytestqt.qtbot.QtBot(request)

	Instances of this class are responsible for sending events to Qt objects (usually widgets),
simulating user input.

Important

Instances of this class should be accessed only by using a qtbot fixture,
never instantiated directly.

Widgets

	
addWidget(widget)

	Adds a widget to be tracked by this bot. This is not required, but will ensure that the
widget gets closed by the end of the test, so it is highly recommended.

	Parameters

	widget (QWidget) – Widget to keep track of.

Note

This method is also available as add_widget (pep-8 alias)

	
captureExceptions(**kwds)

	
New in version 2.1.

Context manager that captures Qt virtual method exceptions that happen in block inside
context.

with qtbot.capture_exceptions() as exceptions:
 qtbot.click(button)

exception is a list of sys.exc_info tuples
assert len(exceptions) == 1

Note

This method is also available as capture_exceptions (pep-8 alias)

	
waitActive(widget, timeout=1000)

	Context manager that waits for timeout milliseconds or until the window is active.
If window is not exposed within timeout milliseconds, raise TimeoutError.

This is mainly useful for asynchronous systems like X11, where a window will be mapped to screen
some time after being asked to show itself on the screen.

with qtbot.waitActive(widget, timeout=500):
 show_action()

	Parameters

	
	widget (QWidget) – Widget to wait for.

	timeout (int|None) – How many milliseconds to wait for.

Note

This function is only available in PyQt5, raising a RuntimeError if called from
PyQt4 or PySide.

Note

This method is also available as wait_active (pep-8 alias)

	
waitExposed(widget, timeout=1000)

	Context manager that waits for timeout milliseconds or until the window is exposed.
If the window is not exposed within timeout milliseconds, raise TimeoutError.

This is mainly useful for asynchronous systems like X11, where a window will be mapped to screen
some time after being asked to show itself on the screen.

with qtbot.waitExposed(splash, timeout=500):
 startup()

	Parameters

	
	widget (QWidget) – Widget to wait for.

	timeout (int|None) – How many milliseconds to wait for.

Note

This function is only available in PyQt5, raising a RuntimeError if called from
PyQt4 or PySide.

Note

This method is also available as wait_exposed (pep-8 alias)

	
waitForWindowShown(widget)

	Waits until the window is shown in the screen. This is mainly useful for asynchronous
systems like X11, where a window will be mapped to screen some time after being asked to
show itself on the screen.

	Parameters

	widget (QWidget) – Widget to wait on.

Note

In PyQt5 this function is considered deprecated in favor of waitExposed().

Note

This method is also available as wait_for_window_shown (pep-8 alias)

	
stopForInteraction()

	Stops the current test flow, letting the user interact with any visible widget.

This is mainly useful so that you can verify the current state of the program while writing
tests.

Closing the windows should resume the test run, with qtbot attempting to restore visibility
of the widgets as they were before this call.

Note

As a convenience, it is also aliased as stop.

	
wait(ms)

	
New in version 1.9.

Waits for ms milliseconds.

While waiting, events will be processed and your test will stay
responsive to user interface events or network communication.

Signals and Events

	
waitSignal(signal=None, timeout=1000, raising=None, check_params_cb=None)

	
New in version 1.2.

Stops current test until a signal is triggered.

Used to stop the control flow of a test until a signal is emitted, or
a number of milliseconds, specified by timeout, has elapsed.

Best used as a context manager:

with qtbot.waitSignal(signal, timeout=1000):
 long_function_that_calls_signal()

Also, you can use the SignalBlocker directly if the context
manager form is not convenient:

blocker = qtbot.waitSignal(signal, timeout=1000)
blocker.connect(another_signal)
long_function_that_calls_signal()
blocker.wait()

Any additional signal, when triggered, will make wait() return.

New in version 1.4: The raising parameter.

New in version 2.0: The check_params_cb parameter.

	Parameters

	
	signal (Signal) – A signal to wait for, or a tuple (signal, signal_name_as_str) to improve the error message that is part
of TimeoutError. Set to None to just use timeout.

	timeout (int) – How many milliseconds to wait before resuming control flow.

	raising (bool) – If QtBot.TimeoutError
should be raised if a timeout occurred.
This defaults to True unless qt_wait_signal_raising = false
is set in the config.

	check_params_cb (Callable) – Optional callable that compares the provided signal parameters to some expected parameters.
It has to match the signature of signal (just like a slot function would) and return True if
parameters match, False otherwise.

	Returns

	SignalBlocker object. Call SignalBlocker.wait() to wait.

Note

Cannot have both signals and timeout equal None, or
else you will block indefinitely. We throw an error if this occurs.

Note

This method is also available as wait_signal (pep-8 alias)

	
waitSignals(signals=None, timeout=1000, raising=None, check_params_cbs=None, order='none')

	
New in version 1.4.

Stops current test until all given signals are triggered.

Used to stop the control flow of a test until all (and only
all) signals are emitted or the number of milliseconds specified by
timeout has elapsed.

Best used as a context manager:

with qtbot.waitSignals([signal1, signal2], timeout=1000):
 long_function_that_calls_signals()

Also, you can use the MultiSignalBlocker directly if the
context manager form is not convenient:

blocker = qtbot.waitSignals(signals, timeout=1000)
long_function_that_calls_signal()
blocker.wait()

	Parameters

	
	signals (list) – A list of Signal objects to wait for. Alternatively: a list of (Signal, str) tuples of the form
(signal, signal_name_as_str) to improve the error message that is part of TimeoutError.
Set to None to just use timeout.

	timeout (int) – How many milliseconds to wait before resuming control flow.

	raising (bool) – If QtBot.TimeoutError
should be raised if a timeout occurred.
This defaults to True unless qt_wait_signal_raising = false
is set in the config.

	check_params_cbs (list) – optional list of callables that compare the provided signal parameters to some expected parameters.
Each callable has to match the signature of the corresponding signal in signals (just like a slot
function would) and return True if parameters match, False otherwise.
Instead of a specific callable, None can be provided, to disable parameter checking for the
corresponding signal.
If the number of callbacks doesn’t match the number of signals ValueError will be raised.

	order (str) – Determines the order in which to expect signals:

	"none": no order is enforced

	"strict": signals have to be emitted strictly in the provided order
(e.g. fails when expecting signals [a, b] and [a, a, b] is emitted)

	"simple": like “strict”, but signals may be emitted in-between the provided ones, e.g. expected
signals == [a, b, c] and actually emitted signals = [a, a, b, a, c] works
(would fail with "strict").

	Returns

	MultiSignalBlocker object. Call MultiSignalBlocker.wait()
to wait.

Note

Cannot have both signals and timeout equal None, or
else you will block indefinitely. We throw an error if this occurs.

Note

This method is also available as wait_signals (pep-8 alias)

	
assertNotEmitted(**kwds)

	
New in version 1.11.

Make sure the given signal doesn’t get emitted.

This is intended to be used as a context manager.

Note

This method is also available as assert_not_emitted
(pep-8 alias)

	
waitUntil(callback, timeout=1000)

	
New in version 2.0.

Wait in a busy loop, calling the given callback periodically until timeout is reached.

callback() should raise AssertionError to indicate that the desired condition
has not yet been reached, or just return None when it does. Useful to assert until
some condition is satisfied:

def view_updated():
 assert view_model.count() > 10
qtbot.waitUntil(view_updated)

Another possibility is for callback() to return True when the desired condition
is met, False otherwise. Useful specially with lambda for terser code, but keep
in mind that the error message in those cases is usually not very useful because it is
not using an assert expression.

qtbot.waitUntil(lambda: view_model.count() > 10)

Note that this usage only accepts returning actual True and False values,
so returning an empty list to express “falseness” raises a ValueError.

	Parameters

	
	callback – callable that will be called periodically.

	timeout – timeout value in ms.

	Raises

	ValueError – if the return value from the callback is anything other than None,
True or False.

Note

This method is also available as wait_until (pep-8 alias)

Raw QTest API

Methods below provide very low level functions, as sending a single mouse click or a key event.
Those methods are just forwarded directly to the QTest API [http://doc.qt.digia.com/4.8/qtest.html]. Consult the documentation for more
information.

—

Below are methods used to simulate sending key events to widgets:

	
static keyClick(widget, key[, modifier=Qt.NoModifier[, delay=-1]])

	

	
static keyClicks(widget, key sequence[, modifier=Qt.NoModifier[, delay=-1]])

	

	
static keyEvent(action, widget, key[, modifier=Qt.NoModifier[, delay=-1]])

	

	
static keyPress(widget, key[, modifier=Qt.NoModifier[, delay=-1]])

	

	
static keyRelease(widget, key[, modifier=Qt.NoModifier[, delay=-1]])

	Sends one or more keyword events to a widget.

	Parameters

	
	widget (QWidget) – the widget that will receive the event

	key (str|int) – key to send, it can be either a Qt.Key_* constant or a single character string.

	Parameters

	
	modifier (Qt.KeyboardModifier) – flags OR’ed together representing other modifier keys
also pressed. Possible flags are:

	Qt.NoModifier: No modifier key is pressed.

	Qt.ShiftModifier: A Shift key on the keyboard is pressed.

	Qt.ControlModifier: A Ctrl key on the keyboard is pressed.

	Qt.AltModifier: An Alt key on the keyboard is pressed.

	Qt.MetaModifier: A Meta key on the keyboard is pressed.

	Qt.KeypadModifier: A keypad button is pressed.

	Qt.GroupSwitchModifier: X11 only. A Mode_switch key on the keyboard is pressed.

	delay (int) – after the event, delay the test for this miliseconds (if > 0).

	
static keyToAscii(key)

	Auxilliary method that converts the given constant ot its equivalent ascii.

	Parameters

	key (Qt.Key_*) – one of the constants for keys in the Qt namespace.

	Return type

	str

	Returns

	the equivalent character string.

Note

This method is not available in PyQt.

—

Below are methods used to simulate sending mouse events to widgets.

	
static mouseClick(widget, button[, stateKey=0[, pos=QPoint()[, delay=-1]]])

	

	
static mouseDClick(widget, button[, stateKey=0[, pos=QPoint()[, delay=-1]]])

	

	
static mouseEvent(action, widget, button, stateKey, pos[, delay=-1])

	

	
static mouseMove(widget[, pos=QPoint()[, delay=-1]])

	

	
static mousePress(widget, button[, stateKey=0[, pos=QPoint()[, delay=-1]]])

	

	
static mouseRelease(widget, button[, stateKey=0[, pos=QPoint()[, delay=-1]]])

	Sends a mouse moves and clicks to a widget.

	Parameters

	
	widget (QWidget) – the widget that will receive the event

	button (Qt.MouseButton) – flags OR’ed together representing the button pressed.
Possible flags are:

	Qt.NoButton: The button state does not refer to any button (see QMouseEvent.button()).

	Qt.LeftButton: The left button is pressed, or an event refers to the left button. (The left button may be the right button on left-handed mice.)

	Qt.RightButton: The right button.

	Qt.MidButton: The middle button.

	Qt.MiddleButton: The middle button.

	Qt.XButton1: The first X button.

	Qt.XButton2: The second X button.

	modifier (Qt.KeyboardModifier) – flags OR’ed together representing other modifier keys
also pressed. See keyboard modifiers.

	position (QPoint) – position of the mouse pointer.

	delay (int) – after the event, delay the test for this miliseconds (if > 0).

TimeoutError

	
class pytestqt.qtbot.TimeoutError

	
New in version 2.1.

Exception thrown by pytestqt.qtbot.QtBot methods.

Note

In versions prior to 2.1, this exception was called SignalTimeoutError.
An alias is kept for backward compatibility.

SignalBlocker

	
class pytestqt.wait_signal.SignalBlocker(timeout=1000, raising=True, check_params_cb=None)

	Returned by pytestqt.qtbot.QtBot.waitSignal() method.

	Variables

	
	timeout (int) – maximum time to wait for a signal to be triggered. Can
be changed before wait() is called.

	signal_triggered (bool) – set to True if a signal (or all signals in
case of MultipleSignalBlocker) was triggered, or
False if timeout was reached instead. Until wait() is called,
this is set to None.

	raising (bool) – If TimeoutError should be raised if a timeout occurred.

Note

contrary to the parameter of same name in
pytestqt.qtbot.QtBot.waitSignal(), this parameter does not
consider the qt_wait_signal_raising ini option.

	args (list) – The arguments which were emitted by the signal, or None if the signal
wasn’t emitted at all.

New in version 1.10: The args attribute.

	
wait()

	Waits until either a connected signal is triggered or timeout is reached.

	Raises

	ValueError – if no signals are connected and timeout is None; in
this case it would wait forever.

	
connect(signal)

	Connects to the given signal, making wait() return once
this signal is emitted.

More than one signal can be connected, in which case any one of
them will make wait() return.

	Parameters

	signal – QtCore.Signal or tuple (QtCore.Signal, str)

MultiSignalBlocker

	
class pytestqt.wait_signal.MultiSignalBlocker(timeout=1000, raising=True, check_params_cbs=None, order='none')

	Returned by pytestqt.qtbot.QtBot.waitSignals() method, blocks until
all signals connected to it are triggered or the timeout is reached.

	Variables identical to SignalBlocker:

	
	timeout

	signal_triggered

	raising

	
wait()

	Waits until either a connected signal is triggered or timeout is reached.

	Raises

	ValueError – if no signals are connected and timeout is None; in
this case it would wait forever.

SignalEmittedError

	
class pytestqt.wait_signal.SignalEmittedError

	
New in version 1.11.

The exception thrown by pytestqt.qtbot.QtBot.assertNotEmitted() if a
signal was emitted unexpectedly.

Record

	
class pytestqt.logging.Record(msg_type, message, ignored, context)

	Hold information about a message sent by one of Qt log functions.

	Variables

	
	message (str) – message contents.

	type (Qt.QtMsgType) – enum that identifies message type

	type_name (str) – type as string: "QtDebugMsg",
"QtWarningMsg" or "QtCriticalMsg".

	log_type_name (str) – type name similar to the logging package: DEBUG,
WARNING and CRITICAL.

	when (datetime.datetime) – when the message was captured

	ignored (bool) – If this record matches a regex from the “qt_log_ignore”
option.

	context – a namedtuple containing the attributes file,
function, line. Only available in Qt5, otherwise is None.

qapp fixture

	
pytestqt.plugin.qapp(qapp_args)

	Fixture that instantiates the QApplication instance that will be used by
the tests.

You can use the qapp fixture in tests which require a QApplication
to run, but where you don’t need full qtbot functionality.

	
pytestqt.plugin.qapp_args()

	Fixture that provides QApplication arguments to use.

You can override this fixture to pass different arguments to
QApplication:

@pytest.fixture(scope='session')
def qapp_args():
 return ['--arg']

Changelog

2.4.1 (2018-06-14)

	Properly handle chained exceptions when capturing them inside
virtual methods (#215 [https://github.com/pytest-dev/pytest-qt/pull/215]). Thanks @fabioz [https://github.com/fabioz] for the report and sample
code with the fix.

2.4.0

	Use new pytest 3.6 marker API when possible (#212 [https://github.com/pytest-dev/pytest-qt/pull/212]). Thanks @The-Compiler [https://github.com/The-Compiler] for the PR.

2.3.2

	Fix QStringListModel import when using PySide2 (#209 [https://github.com/pytest-dev/pytest-qt/pull/209]). Thanks @rth [https://github.com/rth] for the PR.

2.3.1

	PYTEST_QT_API environment variable correctly wins over qt_api
ini variable if both are set at the same time (#196 [https://github.com/pytest-dev/pytest-qt/pull/196]). Thanks @mochick [https://github.com/mochick] for the PR.

2.3.0

	New qapp_args fixture which can be used to pass custom arguments to
QApplication.
Thanks @The-Compiler [https://github.com/The-Compiler] for the PR.

2.2.1

	modeltester now accepts QBrush for BackgroundColorRole and TextColorRole (#189 [https://github.com/pytest-dev/pytest-qt/issues/189]).
Thanks @p0las [https://github.com/p0las] for the PR.

2.2.0

	pytest-qt now supports PySide2 [https://wiki.qt.io/PySide2] thanks to @rth [https://github.com/rth]!

2.1.2

	Fix issue where pytestqt was hiding the information when there’s an exception raised from another exception on Python 3.

2.1.1

	Fixed tests on Python 3.6.

2.1

	waitSignal and waitSignals now provide much more detailed messages
when expected signals are not emitted. Many thanks to @MShekow [https://github.com/MShekow] for the PR
(#153 [https://github.com/pytest-dev/pytest-qt/issues/153]).

	qtbot fixture now can capture Qt virtual method exceptions in a block using
captureExceptions (#154 [https://github.com/pytest-dev/pytest-qt/issues/154]). Thanks to @fogo [https://github.com/fogo] for the PR.

	New qtbot.waitActive [http://pytest-qt.readthedocs.io/en/latest/reference.html#pytestqt.qtbot.QtBot.waitActive] and qtbot.waitExposed [http://pytest-qt.readthedocs.io/en/latest/reference.html#pytestqt.qtbot.QtBot.waitExposed] methods for PyQt5.
Thanks @The-Compiler [https://github.com/The-Compiler] for the request (#158 [https://github.com/pytest-dev/pytest-qt/issues/158]).

	SignalTimeoutError has been renamed to TimeoutError. SignalTimeoutError is kept as
a backward compatibility alias.

2.0

Breaking Changes

With pytest-qt 2.0, we changed some defaults to values we think are much
better, however this required some backwards-incompatible changes:

	pytest-qt now defaults to using PyQt5 if PYTEST_QT_API is not set.
Before, it preferred PySide which is using the discontinued Qt4.

	Python 3 versions prior to 3.4 are no longer supported.

	The @pytest.mark.qt_log_ignore mark now defaults to extend=True, i.e.
extends the patterns defined in the config file rather than overriding them.
You can pass extend=False to get the old behaviour of overriding the
patterns.

	qtbot.waitSignal now defaults to raising=True and raises an exception
on timeouts. You can set qt_wait_signal_raising = false in your config to
get back the old behaviour.

	PYTEST_QT_FORCE_PYQT environment variable is no longer supported. Set PYTEST_QT_API
to the appropriate value instead or the new qt_api configuration option in your
pytest.ini file.

New Features

	From this version onward, pytest-qt is licensed under the MIT license (#134 [https://github.com/pytest-dev/pytest-qt/issues/134]).

	New qtmodeltester fixture to test QAbstractItemModel subclasses.
Thanks @The-Compiler [https://github.com/The-Compiler] for the initiative and port of the original C++ code
for ModelTester (#63 [https://github.com/pytest-dev/pytest-qt/pull/63]).

	New qtbot.waitUntil method, which continuously calls a callback until a condition
is met or a timeout is reached. Useful for testing asynchronous features
(like in X window environments for example).

	waitSignal and waitSignals can receive an optional callback (or list of callbacks)
that can evaluate if the arguments of emitted signals should resume execution or not.
Additionally waitSignals has a new order parameter that allows to expect signals
and their arguments in a strict, semi-strict or no specific order.
Thanks @MShekow [https://github.com/MShekow] for the PR (#141 [https://github.com/pytest-dev/pytest-qt/pull/141]).

	Now which Qt binding pytest-qt will use can be configured by the qt_api config option.
Thanks @The-Compiler [https://github.com/The-Compiler] for the request (#129 [https://github.com/pytest-dev/pytest-qt/issues/129]).

	While pytestqt.qt_compat is an internal module and shouldn’t be imported directly,
it is known that some test suites did import it. This module now uses a lazy-load mechanism
to load Qt classes and objects, so the old symbols (QtCore, QApplication, etc.) are
no longer available from it.

Other Changes

	Exceptions caught by pytest-qt in sys.excepthook are now also printed
to stderr, making debugging them easier from within an IDE.
Thanks @fabioz [https://github.com/fabioz] for the PR (126 [https://github.com/pytest-dev/pytest-qt/pull/126])!

1.11.0

Note

The default value for raising is planned to change to True starting in
pytest-qt version 1.12. Users wishing to preserve
the current behavior (raising is False by default) should make
use of the new qt_wait_signal_raising ini option below.

	New qt_wait_signal_raising ini option can be used to override the default
value of the raising parameter of the qtbot.waitSignal and
qtbot.waitSignals functions when omitted:

[pytest]
qt_wait_signal_raising = true

Calls which explicitly pass the raising parameter are not affected.
Thanks @The-Compiler [https://github.com/The-Compiler] for idea and initial work on a PR (120 [https://github.com/pytest-dev/pytest-qt/issues/120]).

	qtbot now has a new assertNotEmitted context manager which can be
used to ensure the given signal is not emitted (92 [https://github.com/pytest-dev/pytest-qt/issues/92]).
Thanks @The-Compiler [https://github.com/The-Compiler] for the PR!

1.10.0

	SignalBlocker now has a args attribute with the arguments of the
signal that triggered it, or None on a time out (115 [https://github.com/pytest-dev/pytest-qt/issues/115]).
Thanks @billyshambrook [https://github.com/billyshambrook] for the request and @The-Compiler [https://github.com/The-Compiler] for the PR.

	MultiSignalBlocker is now properly disconnects from signals upon exit.

1.9.0

	Exception capturing now happens as early/late as possible in order to catch
all possible exceptions (including fixtures)(105 [https://github.com/pytest-dev/pytest-qt/issues/105]). Thanks
@The-Compiler [https://github.com/The-Compiler] for the request.

	Widgets registered by qtbot.addWidget are now closed before all other
fixtures are tear down (106 [https://github.com/pytest-dev/pytest-qt/issues/106]). Thanks @The-Compiler [https://github.com/The-Compiler] for request.

	qtbot now has a new wait method which does a blocking wait while the
event loop continues to run, similar to QTest::qWait. Thanks
@The-Compiler [https://github.com/The-Compiler] for the PR (closes 107 [https://github.com/pytest-dev/pytest-qt/issues/107])!

	raise RuntimeError instead of ImportError when failing to import
any Qt binding: raising the latter causes pluggy in pytest-2.8 to
generate a subtle warning instead of a full blown error.
Thanks @Sheeo [https://github.com/Sheeo] for bringing this problem to attention (closes 109 [https://github.com/pytest-dev/pytest-qt/issues/109]).

1.8.0

	pytest.mark.qt_log_ignore now supports an extend parameter that will extend
the list of regexes used to ignore Qt messages (defaults to False).
Thanks @The-Compiler [https://github.com/The-Compiler] for the PR (99 [https://github.com/pytest-dev/pytest-qt/issues/99]).

	Fixed internal error when interacting with other plugins that raise an error,
hiding the original exception (98 [https://github.com/pytest-dev/pytest-qt/issues/98]). Thanks @The-Compiler [https://github.com/The-Compiler] for the PR!

	Now pytest-qt is properly tested with PyQt5 on Travis-CI. Many thanks
to @The-Compiler [https://github.com/The-Compiler] for the PR!

1.7.0

	PYTEST_QT_API can now be set to pyqt4v2 in order to use version 2 of the
PyQt4 API. Thanks @montefra [https://github.com/montefra] for the PR (93 [https://github.com/pytest-dev/pytest-qt/issues/93])!

1.6.0

	Reduced verbosity when exceptions are captured in virtual methods
(77 [https://github.com/pytest-dev/pytest-qt/issues/77], thanks @The-Compiler [https://github.com/The-Compiler]).

	pytestqt.plugin has been split in several files (74 [https://github.com/pytest-dev/pytest-qt/issues/74]) and tests have been
moved out of the pytestqt package. This should not affect users, but it
is worth mentioning nonetheless.

	QApplication.processEvents() is now called before and after other fixtures
and teardown hooks, to better try to avoid non-processed events from leaking
from one test to the next. (67 [https://github.com/pytest-dev/pytest-qt/issues/67], thanks @The-Compiler [https://github.com/The-Compiler]).

	Show Qt/PyQt/PySide versions in pytest header (68 [https://github.com/pytest-dev/pytest-qt/issues/68], thanks @The-Compiler [https://github.com/The-Compiler]!).

	Disconnect SignalBlocker functions after its loop exits to ensure second
emissions that call the internal functions on the now-garbage-collected
SignalBlocker instance (#69, thanks @The-Compiler [https://github.com/The-Compiler] for the PR).

1.5.1

	Exceptions are now captured also during test tear down, as delayed events will
get processed then and might raise exceptions in virtual methods;
this is specially problematic in PyQt5.5, which
changed the behavior [http://pyqt.sourceforge.net/Docs/PyQt5/incompatibilities.html#pyqt-v5-5]
to call abort by default, which will crash the interpreter.
(65 [https://github.com/pytest-dev/pytest-qt/issues/65], thanks @The-Compiler [https://github.com/The-Compiler]).

1.5.0

	Fixed log line number in messages, and provide better contextual information
in Qt5 (55 [https://github.com/pytest-dev/pytest-qt/issues/55], thanks @The-Compiler [https://github.com/The-Compiler]);

	Fixed issue where exceptions inside a waitSignals or waitSignal
with-statement block would be swallowed and a SignalTimeoutError would be
raised instead. (59 [https://github.com/pytest-dev/pytest-qt/issues/59], thanks @The-Compiler [https://github.com/The-Compiler] for bringing up the issue and
providing a test case);

	Fixed issue where the first usage of qapp fixture would return None.
Thanks to @gqmelo [https://github.com/gqmelo] for noticing and providing a PR;

	New qtlog now sports a context manager method, disabled (58 [https://github.com/pytest-dev/pytest-qt/issues/58]).
Thanks @The-Compiler [https://github.com/The-Compiler] for the idea and testing;

1.4.0

	Messages sent by qDebug, qWarning, qCritical are captured and displayed
when tests fail, similar to pytest-catchlog [https://pypi.python.org/pypi/pytest-catchlog]. Also, tests
can be configured to automatically fail if an unexpected message is generated.

	New method waitSignals: will block untill all signals given are
triggered (thanks @The-Compiler [https://github.com/The-Compiler] for idea and complete PR).

	New parameter raising to waitSignals and waitSignals: when True
will raise a qtbot.SignalTimeoutError exception when
timeout is reached (defaults to False).
(thanks again to @The-Compiler [https://github.com/The-Compiler] for idea and complete PR).

	pytest-qt now requires pytest version >= 2.7.

Internal changes to improve memory management

	QApplication.exit() is no longer called at the end of the test session
and the QApplication instance is not garbage collected anymore;

	QtBot no longer receives a QApplication as a parameter in the
constructor, always referencing QApplication.instance() now; this avoids
keeping an extra reference in the qtbot instances.

	deleteLater is called on widgets added in QtBot.addWidget at the end
of each test;

	QApplication.processEvents() is called at the end of each test to
make sure widgets are cleaned up;

1.3.0

	pytest-qt now supports PyQt5 [http://pyqt.sourceforge.net/Docs/PyQt5/introduction.html]!

Which Qt api will be used is still detected automatically, but you can choose
one using the PYTEST_QT_API environment variable
(the old PYTEST_QT_FORCE_PYQT is still supported for backward compatibility).

Many thanks to @jdreaver [https://github.com/jdreaver] for helping to test this release!

1.2.3

	Now the module ``qt_compat`` no longer sets QString and QVariant APIs to
2 for PyQt, making it compatible for those still using version 1 of the
API.

1.2.2

	Now it is possible to disable automatic exception capture by using markers or
a pytest.ini option. Consult the documentation for more information.
(26 [https://github.com/pytest-dev/pytest-qt/issues/26], thanks @datalyze-solutions [https://github.com/datalyze-solutions] for bringing this up).

	QApplication instance is created only if it wasn’t created yet
(21 [https://github.com/pytest-dev/pytest-qt/issues/21], thanks @fabioz [https://github.com/fabioz]!)

	addWidget now keeps a weak reference its widgets (20 [https://github.com/pytest-dev/pytest-qt/issues/20], thanks @fabioz [https://github.com/fabioz])

1.2.1

	Fixed 16 [https://github.com/pytest-dev/pytest-qt/issues/16]: a signal emitted immediately inside a waitSignal block now
works as expected (thanks @baudren [https://github.com/baudren]).

1.2.0

This version include the new waitSignal function, which makes it easy
to write tests for long running computations that happen in other threads
or processes:

def test_long_computation(qtbot):
 app = Application()

 # Watch for the app.worker.finished signal, then start the worker.
 with qtbot.waitSignal(app.worker.finished, timeout=10000) as blocker:
 blocker.connect(app.worker.failed) # Can add other signals to blocker
 app.worker.start()
 # Test will wait here until either signal is emitted, or 10 seconds has elapsed

 assert blocker.signal_triggered # Assuming the work took less than 10 seconds
 assert_application_results(app)

Many thanks to @jdreaver [https://github.com/jdreaver] for discussion and complete PR! (12 [https://github.com/pytest-dev/pytest-qt/issues/12], 13 [https://github.com/pytest-dev/pytest-qt/issues/13])

1.1.1

	Added stop as an alias for stopForInteraction (10 [https://github.com/pytest-dev/pytest-qt/issues/10], thanks @itghisi [https://github.com/itghisi])

	Now exceptions raised in virtual methods make tests fail, instead of silently
passing (11 [https://github.com/pytest-dev/pytest-qt/issues/11]). If an exception is raised, the test will fail and it exceptions
that happened inside virtual calls will be printed as such:

E Failed: Qt exceptions in virtual methods:
E __
E File "x:\pytest-qt\pytestqt_tests\test_exceptions.py", line 14, in event
E raise ValueError('mistakes were made')
E
E ValueError: mistakes were made
E __
E File "x:\pytest-qt\pytestqt_tests\test_exceptions.py", line 14, in event
E raise ValueError('mistakes were made')
E
E ValueError: mistakes were made
E __

Thanks to @jdreaver [https://github.com/jdreaver] for request and sample code!

	Fixed documentation for QtBot: it was not being rendered in the
docs due to an import error.

1.1.0

Python 3 support.

1.0.2

Minor documentation fixes.

1.0.1

Small bug fix release.

1.0.0

First working version.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pytestqt	

 	
 	
 pytestqt.logging	

 	
 	
 pytestqt.plugin	

 	
 	
 pytestqt.qtbot	

 	
 	
 pytestqt.wait_signal	

Index

 A
 | C
 | K
 | M
 | P
 | Q
 | R
 | S
 | T
 | W

A

 	
 	addWidget() (pytestqt.qtbot.QtBot method)

 	
 	assertNotEmitted() (pytestqt.qtbot.QtBot method)

C

 	
 	captureExceptions() (pytestqt.qtbot.QtBot method)

 	
 	connect() (pytestqt.wait_signal.SignalBlocker method)

K

 	
 	keyClick() (pytestqt.qtbot.QtBot static method)

 	keyClicks() (pytestqt.qtbot.QtBot static method)

 	keyEvent() (pytestqt.qtbot.QtBot static method)

 	
 	keyPress() (pytestqt.qtbot.QtBot static method)

 	keyRelease() (pytestqt.qtbot.QtBot static method)

 	keyToAscii() (pytestqt.qtbot.QtBot static method)

M

 	
 	mouseClick() (pytestqt.qtbot.QtBot static method)

 	mouseDClick() (pytestqt.qtbot.QtBot static method)

 	mouseEvent() (pytestqt.qtbot.QtBot static method)

 	
 	mouseMove() (pytestqt.qtbot.QtBot static method)

 	mousePress() (pytestqt.qtbot.QtBot static method)

 	mouseRelease() (pytestqt.qtbot.QtBot static method)

 	MultiSignalBlocker (class in pytestqt.wait_signal)

P

 	
 	pytestqt.logging (module)

 	pytestqt.plugin (module)

 	
 	pytestqt.qtbot (module)

 	pytestqt.wait_signal (module)

Q

 	
 	qapp() (in module pytestqt.plugin)

 	
 	qapp_args() (in module pytestqt.plugin)

 	QtBot (class in pytestqt.qtbot)

R

 	
 	Record (class in pytestqt.logging)

S

 	
 	SignalBlocker (class in pytestqt.wait_signal)

 	
 	SignalEmittedError (class in pytestqt.wait_signal)

 	stopForInteraction() (pytestqt.qtbot.QtBot method)

T

 	
 	TimeoutError (class in pytestqt.qtbot)

W

 	
 	wait() (pytestqt.qtbot.QtBot method)

 	(pytestqt.wait_signal.MultiSignalBlocker method)

 	(pytestqt.wait_signal.SignalBlocker method)

 	waitActive() (pytestqt.qtbot.QtBot method)

 	
 	waitExposed() (pytestqt.qtbot.QtBot method)

 	waitForWindowShown() (pytestqt.qtbot.QtBot method)

 	waitSignal() (pytestqt.qtbot.QtBot method)

 	waitSignals() (pytestqt.qtbot.QtBot method)

 	waitUntil() (pytestqt.qtbot.QtBot method)

 _static/up-pressed.png

_static/up.png

_images/find_files_dialog.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 pytest-qt

 		
 Introduction

 		
 Requirements

 		
 Installation

 		
 Development

 		
 Versioning

 		
 Tutorial

 		
 Qt Logging Capture

 		
 Disabling Logging Capture

 		
 qtlog fixture

 		
 Log Formatting

 		
 Automatically failing tests when logging messages are emitted

 		
 waitSignal: Waiting for threads, processes, etc.

 		
 raising parameter

 		
 qt_wait_signal_raising ini option

 		
 check_params_cb parameter

 		
 Getting arguments of the emitted signal

 		
 Getting all arguments of non-matching arguments

 		
 waitSignals

 		
 check_params_cbs parameter

 		
 order parameter

 		
 Getting emitted signals and arguments

 		
 Making sure a given signal is not emitted

 		
 waitUntil: Waiting for arbitrary conditions

 		
 Exceptions in virtual methods

 		
 Disabling the automatic exception hook

 		
 Model Tester

 		
 A note about QApplication.exit()

 		
 A note about pyqt4v2

 		
 A note about Modal Dialogs

 		
 Simple Dialogs

 		
 Custom Dialogs

 		
 Troubleshooting

 		
 tox: InvocationError without further information

 		
 xvfb: AssertionError, TimeoutError when using waitUntil, waitExposed and UI events.

 		
 Reference

 		
 QtBot

 		
 TimeoutError

 		
 SignalBlocker

 		
 MultiSignalBlocker

 		
 SignalEmittedError

 		
 Record

 		
 qapp fixture

 		
 Changelog

 		
 2.4.1 (2018-06-14)

 		
 2.4.0

 		
 2.3.2

 		
 2.3.1

 		
 2.3.0

 		
 2.2.1

 		
 2.2.0

 		
 2.1.2

 		
 2.1.1

 		
 2.1

 		
 2.0

 		
 Breaking Changes

 		
 New Features

 		
 Other Changes

 		
 1.11.0

 		
 1.10.0

 		
 1.9.0

 		
 1.8.0

 		
 1.7.0

 		
 1.6.0

 		
 1.5.1

 		
 1.5.0

 		
 1.4.0

 		
 Internal changes to improve memory management

 		
 1.3.0

 		
 1.2.3

 		
 1.2.2

 		
 1.2.1

 		
 1.2.0

 		
 1.1.1

 		
 1.1.0

 		
 1.0.2

 		
 1.0.1

 		
 1.0.0

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/find_files_dialog.png

