pytest-gt Documentation
Release 1.9.0

Bruno Oliveira

October 31, 2015

Contents

Introduction 3
1.1 Requirements v v i e 3
1.2 Installation e e e e e e 3
1.3 Development o o e e e e e e e e e e e e 4
1.4 Versioning o e e e e e e e e e e e 4
Tutorial 5
Qt Logging Capture

3.1 Automatically failing tests when logging messages areemitted 8
Waiting for threads, processes, etc. 11
Exceptions in virtual methods 13
A note about QApplication.exit() 15
Reference 17
Tl QEBOL . .o o e e e e e e e e 17
7.2 SignalBlocker e e e e e e 20
7.3 MultiSignalBlocker 21
7.4 SignalTimeoutError L 21
7.5 Record L e e e e 21
Changelog 23
.1 1.9.0 . . e 23
8.2 L8O . 23
83 LT7.0 . o e e 23
8.4 1.6.0 . .. e 23
8.5 LSl 24
8.6 L.5.0 . . e e 24
87 LAD . o e 24
8.8 1.3.0 . . e e 25
8.0 123 25
810 1.2.2 o o e e 25
A1 1.2.1 o o e e e 25
812 1.2.0 .« . o e 25
.13 L.L.L o e e 26
.14 1.1.0 . . o o e e 26

815 1.0.2 .« o e
.16 1.0.1 .« o o o e
817 1.0.0 . . o o

Python Module Index

pytest-qt Documentation, Release 1.9.0

Repository GitHub
Version 1.9.0
License LGPL

Author Bruno Oliveira

Contents 1

https://github.com/pytest-dev/pytest-qt
http://www.gnu.org/licenses/lgpl-3.0.txt

pytest-qt Documentation, Release 1.9.0

2 Contents

CHAPTER 1

Introduction

pytest-qt is a pytest plugin that provides fixtures to help programmers write tests for PySide and PyQt.

The main usage is to use the gt bot fixture, which provides methods to simulate user interaction, like key presses and
mouse clicks:

def test_hello(gtbot):
widget = HelloWidget ()
gtbot .addWidget (widget)

click in the Greet button and make sure it updates the appropriate label
gtbot .mouseClick (window.button_greet, QtCore.Qt.LeftButton)

assert window.greet_label.text () == 'Hello!'

1.1 Requirements

Python 2.6 or later, including Python 3+.
Tested with pytest version 2.5.2.

Works with either PySide, PyQt4 or PyQt5, picking whichever is available on the system giving preference to the
first one installed in this order:

e PySide
s PyQt4
e PyOt5

To force a particular API, set the environment variable PYTEST_QT_API to pyside, pygt4, pygqt4v2 or pygtb.
pyat4v2 sets the PyQt 4 API to version 2

1.2 Installation

The package may be installed by running:

‘pip install pytest-gt

Or alternatively, download the package from pypi, extract and execute:

http://www.pytest.org
https://pypi.python.org/pypi/PySide
http://www.riverbankcomputing.com/software/pyqt
http://pypi.python.org/pypi/pytest-qt/

pytest-qt Documentation, Release 1.9.0

‘python setup.py install

Both methods will automatically register it for usage in py . test.

1.3 Development

If you intend to develop pytest—qgt itself, use virtualenv to activate a new fresh environment and execute:

git clone https://github.com/pytest-dev/pytest-gt.git
cd pytest-qgt

python setup.py develop

pip install pyside # or pyqt4/pyqgth

1.4 Versioning

This projects follows semantic versioning.

4 Chapter 1. Introduction

http://virtualenv.readthedocs.org/
http://semver.org/

CHAPTER 2

Tutorial

pytest—qgt registers a new fixture named gtbot, which acts as bot in the sense that it can send keyboard and mouse
events to any widgets being tested. This way, the programmer can simulate user interaction while checking if GUI
controls are behaving in the expected manner.

To illustrate that, consider a widget constructed to allow the user to find files in a given directory inside an application.

Mamed:

Containing text:

In directory: ¥: [PySide-Examples -

File Mame Size

It is a very simple dialog, where the user enters a standard file mask, optionally enters file text to search for and a
button to browse for the desired directory. Its source code is available here,

To test this widget’s basic functionality, create a test function:

def test_basic_search(gtbot, tmpdir):

rrr

test to ensure basic find files functionality is working.

rrr

tmpdir.join('videol.avi') .ensure ()
tmpdir. join('videol.srt') .ensure()
tmpdir.join('video2.avi') .ensure ()
tmpdir. join('video2.srt ') .ensure ()

http://pytest.org/latest/fixture.html
https://github.com/nicoddemus/PySide-Examples/blob/master/examples/dialogs/findfiles.py

pytest-qt Documentation, Release 1.9.0

Here the first parameter indicates that we will be using a gtbot fixture to control our widget. The other parameter is
py.test standard’s tmpdir that we use to create some files that will be used during our test.

Now we create the widget to test and register it:

window = Window ()
window. show ()
gtbot .addWidget (window)

Tip: Registering widgets is not required, but recommended because it will ensure those widgets get properly closed
after each test is done.

Now we use gt bot methods to simulate user interaction with the dialog:

window. fileComboBox.clear ()
gtbot .keyClicks (window.fileComboBox, 'x.avi')

window.directoryComboBox.clear ()
gtbot .keyClicks (window.directoryComboBox, str (tmpdir))

The method keyClicks is used to enter text in the editable combo box, selecting the desired mask and directory.

We then simulate a user clicking the button with the mouseC11ick method:

gtbot .mouseClick (window.findButton, QtCore.Qt.LeftButton)

Once this is done, we inspect the results widget to ensure that it contains the expected files we created earlier:

assert window.filesTable.rowCount () == 2
assert window.filesTable.item (0, 0).text () == 'videol.avi'
assert window.filesTable.item(1l, 0).text () == 'video2.avi'

6 Chapter 2. Tutorial

http://pytest.org/latest/tmpdir.html

CHAPTER 3

Qt Logging Capture

New in version 1.4.

Qt features its own logging mechanism through gInstallMsgHandler (gInstallMessageHandler on Qt5)
and gDebug, gWarning, gCritical functions. These are used by Qt to print warning messages when internal
errors occur.

pytest—qgt automatically captures these messages and displays them when a test fails, similar to what pytest
does for stderr and stdout and the pytest-catchlog plugin. For example:

from pytestqgt.qgt_compat import gWarning

def do_something() :
gWarning('this is a WARNING message')

def test_foo(gtlog):
do_something ()
assert 0

S py.test test.py —-q

F
================================== FAILURES ===================================
test_types
def test_fool():
do_something ()
> assert 0
E assert 0

———————————————————————————— Captured Qt messages —————————————————————————————
QtWarningMsg: this is a WARNING message
1 failed in 0.01 seconds

Disabling Logging Capture

Qt logging capture can be disabled altogether by passing the ——no—gt-1og to the command line, which will fallback
to the default Qt bahavior of printing emitted messages directly to stderr:

py.test test.py —-g —--no-gt-log

================================== FAJLURES ===================================
test_types

def test_fool():

https://github.com/eisensheng/pytest-catchlog

pytest-qt Documentation, Release 1.9.0

do_something ()
> assert 0
E assert 0

test.py:8: AssertionError

this is a WARNING message

pytest—qgt also provides a gt 1og fixture that can used to check if certain messages were emitted during a test:

def do_something() :
gWarning ('this is a WARNING message')

def test_foo(gtlog):
do_something ()
emitted = [(m.type, m.message.strip()) for m in gtlog.records]
assert emitted == [(QtWarningMsg, 'this is a WARNING message')]

gtlog.records is alist of Record instances.

Logging can also be disabled on a block of code using the gt log.disabled () context manager, or with the
pytest.mark.no_qgt_1log mark:

def test_foo(gtlog):
with gtlog.disabled() :
logging is disabled within the context manager
do_something ()

@pytest.mark.no_qgt_log

def test_bar():
logging is disabled for the entire test
do_something ()

Keep in mind that when logging is disabled, gt Log . records will always be an empty list.
Log Formatting

The output format of the messages can also be controlled by using the ——gqt-1log-format command line option,
which accepts a string with standard { } formatting which can make use of attribute interpolation of the record objects:

$ py.test test.py —-—gt-log-format="{rec.when} {rec.type_name}: {rec.message}"

Keep in mind that you can make any of the options above the default for your project by using pytest’s standard
addopts option in you pytest.ini file:

[pytest]
gt_log_format = {rec.when} {rec.type_name}: {rec.message}

3.1 Automatically failing tests when logging messages are emitted

Printing messages to stderr is not the best solution to notice that something might not be working as expected,
specially when running in a continuous integration server where errors in logs are rarely noticed.

You can configure pytest—qgt to automatically fail a test if it emits a message of a certain level or above using the
gqt_log_level_fail ini option:

[pytest]
gt_log_level_fail = CRITICAL

8 Chapter 3. Qt Logging Capture

pytest-qt Documentation, Release 1.9.0

With this configuration, any test which emits a CRITICAL message or above will fail, even if no actual asserts fail
within the test:

from pytestgt.qgt_compat import gCritical

def do_something() :
gCritical ('WM_PAINT failed")

def test_foo(gtlog):
do_something ()

>py.test test.py —--color=no —-g

test_foo
test.py:5: Failure: Qt messages with level CRITICAL or above emitted
———————————————————————————— Captured Qt messages —————————————————————————————
QtCriticalMsg: WM_PAINT failed

The possible values for gt _log_level_fail are:
* NO: disables test failure by log messages.
* DEBUG: messages emitted by gDebug function or above.
* WARNING: messages emitted by gWarning function or above.
* CRITICAL: messages emitted by qCritical function only.

If some failures are known to happen and considered harmless, they can be ignored by using the gt_log_ignore
ini option, which is a list of regular expressions matched using re . search:

[pytest]

gt_log_level_fail = CRITICAL

gt_log_ignore =
WM_DESTROY . *xsent
WM_PAINT failed

py.test test.py —--color=no -g

1 passed in 0.01 seconds

Messages which do not match any of the regular expressions defined by gt _1og_ignore make tests fail as usual:

def do_something() :
gCritical ('WM_PAINT not handled'")
gCritical ('QObject: widget destroyed in another thread')

def test_foo(gtlog):
do_something ()

py.test test.py —-—-color=no —g

================================== FATLURES ============s===s===================
test_foo
test.py:6: Failure: Qt messages with level CRITICAL or above emitted
———————————————————————————— Captured Qt messages —————————————————————————————
QtCriticalMsg: WM_PAINT not handled (IGNORED)

QtCriticalMsg: QObject: widget destroyed in another thread

3.1. Automatically failing tests when logging messages are emitted 9

pytest-qt Documentation, Release 1.9.0

You can also override gt _log_level_fail and gt_log_ignore settins from pytest.ini in some tests by
using a mark with the same name:

def do_something() :
gCritical ('WM_PAINT not handled")
gCritical ('QO0bject: widget destroyed in another thread')

@pytest .mark.qt_log level fail ('CRITICAL')
@pytest .mark.qgt_log_ignore ('WM_DESTROY.xsent', 'WM_PAINT failed')
def test_foo(gtlog):

do_something ()

If you would like to extend the list of ignored patterns, pass extend=True to the gt _log_ignore mark:

@pytest .mark.qt_log _ignore ('WM_DESTROY.*sent', extend=True)
def test_foo(gtlog):
do_something ()

10 Chapter 3. Qt Logging Capture

CHAPTER 4

Waiting for threads, processes, etc.

New in version 1.2.

If your program has long running computations running in other threads or processes, you can use
gtbot .waitSignal to block a test until a signal is emitted (such as QThread.finished) or a timeout is
reached. This makes it easy to write tests that wait until a computation running in another thread or process is com-
pleted before ensuring the results are correct:

def test_long_computation (gtbot) :
app = Application()

Watch for the app.worker.finished signal, then start the worker.

with gtbot.waitSignal (app.worker.finished, timeout=10000) as blocker:
blocker.connect (app.worker.failed) # Can add other signals to blocker
app.worker.start ()
Test will block at this point until signal is emitted or
10 seconds has elapsed

assert blocker.signal_triggered, "process timed-out"
assert_application_results (app)

raising parameter
New in version 1.4.

You can pass raising=True to raise a gtbot.SignalTimeoutError if the timeout is reached before the
signal is triggered:

def test_long_computation (gtbot) :

with gtbot.waitSignal (app.worker.finished, raising=True) as blocker:
app.worker.start ()

1f timeout is reached, qgtbot.SignalTimeoutError will be raised at this point

assert_application_results (app)

waitSignals
New in version 1.4.

If you have to wait until all signals in a list are triggered, use gtbot .waitSignals, which receives a list of signals
instead of a single signal. As with gtbot .waitSignal, it also supports the new raising parameter:

def test_workers (gtbot) :
workers = spawn_workers ()
with gtbot.waitSignal ([w.finished for w in workers], raising=True):
for w in workers:

11

pytest-qt Documentation, Release 1.9.0

w.start ()

this will be reached after all workers emit their "finished"
signal or a gtbot.SignalTimeoutError will be raised
assert_application_results (app)

12 Chapter 4. Waiting for threads, processes, etc.

CHAPTER 5

Exceptions in virtual methods

New in version 1.1.

It is common in Qt programming to override virtual C++ methods to customize behavior, like listening for mouse
events, implement drawing routines, etc.

Fortunately, both PyQt and Py Side support overriding this virtual methods naturally in your python code:

class MyWidget (QWidget) :

mouseReleaseEvent
def mouseReleaseEvent (self, ev):
print ('mouse released at: ' % ev.pos())

This works fine, but if python code in Qt virtual methods raise an exception PyQt 4 and PySide will just print the
exception traceback to standard error, since this method is called deep within Qt’s event loop handling and exceptions
are not allowed at that point. In PyQt 5. 5+, exceptions in virtual methods will by default call abort (), which will
crash the interpreter.

This might be surprising for python users which are used to exceptions being raised at the calling point: for example,
the following code will just print a stack trace without raising any exception:

class MyWidget (QWidget) :

def mouseReleaseEvent (self, ev):
raise RuntimeError ('unexpected error')

w = MyWidget ()
QTest .mouseClick (w, QtCore.Qt.LeftButton)

To make testing Qt code less surprising, pytest—-gt automatically installs an exception hook which captures errors
and fails tests when exceptions are raised inside virtual methods, like this:

Failed: Qt exceptions in virtual methods:

File "x:\pytest-gt\pytestqgt_tests\test_exceptions.py", line 14, in event
raise RuntimeError ('unexpected error')

[3 I 3 I B e B |

RuntimeError: unexpected error

Disabling the automatic exception hook

You can disable the automatic exception hook on individual tests by using a gt _no_exception_capture marker:

13

pytest-qt Documentation, Release 1.9.0

@pytest .mark.qt_no_exception_capture
def test_buttons (gtbot) :

Or even disable it for your entire project in your pytest . ini file:

[pytest]
gt_no_exception_capture = 1

This might be desirable if you plan to install a custom exception hook.

Note: Starting with PyQt5. 5, exceptions raised during virtual methods will actually trigger an abort (), crashing
the Python interpreter. For this reason, disabling exception capture in PyQt 5.5+ 1s not recommended unless you

install your own exception hook.

14 Chapter 5. Exceptions in virtual methods

CHAPTER 6

A note about QApplication.exit()

Some pytest—qgt features, most notably waitSignal and waitSignals, depend on the Qt event loop being
active. Calling OApplication.exit () from a test will cause the main event loop and auxiliary event loops to exit
and all subsequent event loops to fail to start. This is a problem if some of your tests call an application functionality
that calls QApplication.exit ().

One solution is to monkeypatch QApplication.exit () in such tests to ensure it was called by the application
code but without effectively calling it.

For example:

def test_exit_button (gtbot, monkeypatch) :
exit_calls = []
monkeypatch.setattr (QApplication, 'exit', lambda: exit_calls.append(l))
button = get_app_exit_button/()
gtbot.click (button)
assert exit_calls == [1]

Or using the mock package:

def test_exit_button (gtbot) :
with mock.patch.object (QApplication, 'exit'):
button = get_app_exit_button()
gtbot.click (button)
assert QApplication.exit.call_count == 1

15

pytest-qt Documentation, Release 1.9.0

16 Chapter 6. A note about QApplication.exit()

CHAPTER 7

Reference

7.1 QtBot

class pytestqgt .gtbot .QtBot (request)

Instances of this class are responsible for sending events to Qf objects (usually widgets), simulating user input.

Important: Instances of this class should be accessed only by using a gtbot fixture, never instantiated
directly.

Widgets

addwidget (widget)
Adds a widget to be tracked by this bot. This is not required, but will ensure that the widget gets closed by
the end of the test, so it is highly recommended.

Parameters widget (QWidget) — Widget to keep track of.

waitForWindowShown (widget)
Waits until the window is shown in the screen. This is mainly useful for asynchronous systems like X11,
where a window will be mapped to screen some time after being asked to show itself on the screen.

Parameters widget (QWidget) — Widget to wait on.

Note: In Qt5, the actual method called is qWaitForWindowExposed, but this name is kept for backward
compatibility

stopForInteraction ()
Stops the current test flow, letting the user interact with any visible widget.

This is mainly useful so that you can verify the current state of the program while writing tests.

Closing the windows should resume the test run, with gt bot attempting to restore visibility of the widgets
as they were before this call.

Note: As a convenience, it is also aliased as stop.

Signals

waitSignal (signal=None, timeout=1000, raising=False)
New in version 1.2.

Stops current test until a signal is triggered.

17

pytest-qt Documentation, Release 1.9.0

Used to stop the control flow of a test until a signal is emitted, or a number of milliseconds, specified by
timeout, has elapsed.

Best used as a context manager:

with gtbot.waitSignal (signal, timeout=1000) :
long_function_that_calls_signal ()

Also, you can use the SignalBlocker directly if the context manager form is not convenient:

blocker = gtbot.waitSignal (signal, timeout=1000)
blocker.connect (another_signal)
long_function_that_calls_signal ()

blocker.wait ()

Any additional signal, when triggered, will make wait () return.
New in version 1.4: The raising parameter.
Parameters
* signal (Signal) — A signal to wait for. Set to None to just use timeout.
* timeout (inf) — How many milliseconds to wait before resuming control flow.

e raising (bool) — If QtBot.SignalTimeoutError should be raised if a timeout
occurred.

Returns SignalBlocker object. Call SignalBlocker.wait () to wait.

Note: Cannot have both signals and timeout equal None, or else you will block indefinitely. We
throw an error if this occurs.

waitSignals (signals=None, timeout=1000, raising=False)

New in version 1.4.
Stops current test until all given signals are triggered.

Used to stop the control flow of a test until all (and only all) signals are emitted or the number of millisec-
onds specified by t imeout has elapsed.

Best used as a context manager:

with gtbot.waitSignals([signall, signal2], timeout=1000) :
long_function_that_calls_signals()

Also, you can use the MultiSignalBlocker directly if the context manager form is not convenient:

blocker = gtbot.waitSignals(signals, timeout=1000)
long_function_that_calls_signal ()
blocker.wait ()

Parameters

* signals (list) — Alistof Signal's to wait for. Set to *‘Nonetojust
use timeout.

* timeout (inf) — How many milliseconds to wait before resuming control flow.

* raising (bool) — If QtBot.SignalTimeoutError should be raised if a timeout
occurred.

Returns MultiSignalBlocker object. CallMultiSignalBlocker.wait () to wait.

18

Chapter 7. Reference

pytest-qt Documentation, Release 1.9.0

Note: Cannot have both signals and timeout equal None, or else you will block indefinitely. We
throw an error if this occurs.

Raw QTest API

Methods below provide very low level functions, as sending a single mouse click or a key event. Those methods
are just forwarded directly to the QTest API. Consult the documentation for more information.

Below are methods used to simulate sending key events to widgets:

static keyPress (widget, key[, modiﬁer:Qt.NoModiﬁer[, delay=-1]])

static keyClick (widget, key[, modlﬁeert.NoModiﬁer[, delay=-1]])

static keyClicks (widget, key sequence[, modiﬁer=Qt.NOM0diﬁer[, delay=-1]])
static keyEvent (action, widget, key[, modiﬁer:Qt.NoModlﬁer[, delay=-1]])
static keyPress (widget, key[, modiﬁer:Qt.NoModiﬁer[, delay=-1]])

static keyRelease (widget, key[, modiﬁer=Qt.NOM0dlﬁer[, delay=-1]])
Sends one or more keyword events to a widget.

Parameters
* widget (QWidget) — the widget that will receive the event

* key (strlint) —key to send, it can be either a Qt.Key_* constant or a single character string.

Parameters

* modifier (Qr.KeyboardModifier) — flags OR’ed together representing other modifier
keys also pressed. Possible flags are:

— Qt .NoModifier: No modifier key is pressed.

— Qt.ShiftModifier: A Shift key on the keyboard is pressed.
— Qt.ControlModifier: A Ctrl key on the keyboard is pressed.
— Qt.AltModifier: An Alt key on the keyboard is pressed.

— Ot .MetaModifier: A Meta key on the keyboard is pressed.

— Ot .KeypadModifier: A keypad button is pressed.

— Qt.GroupSwitchModifier: X11 only. A Mode_switch key on the keyboard is
pressed.

* delay (int) — after the event, delay the test for this miliseconds (if > 0).
static keyToAscii (key)
Auxilliary method that converts the given constant ot its equivalent ascii.
Parameters key (Qr.Key_*) — one of the constants for keys in the Qt namespace.
Return type str

Returns the equivalent character string.

Note: this method is not available in PyQt.

7.1. QtBot 19

http://doc.qt.digia.com/4.8/qtest.html

pytest-qt Documentation, Release 1.9.0

Below are methods used to simulate sending mouse events to widgets.

static mouseClick (widget, button[, stateKey:O[, pos:QPoint()[, delay=-1]]])
static mouseDClick (widget, button[, stateKey:O[, pos=QPoint()[, delay=-1]]])
static mouseEvent (action, widget, button, stateKey, pos[, delay=-1])

static mouseMove (widget[, pos=QPoint()[, delay=-1]])

static mousePress (widget, button[, stateKey:O[, pos:QPoint()[, delay=-1]]])

static mouseRelease (widget, button[, stateKey:O[, pos:QPoint()[, delay=-1]]])
Sends a mouse moves and clicks to a widget.

Parameters
* widget (QWidget) — the widget that will receive the event

* button (Qr.MouseButton) — flags OR’ed together representing the button pressed. Pos-
sible flags are:

— Qt .NoButton: The button state does not refer to any button (see
QMouseEvent.button()).

Ot .LeftButton: The left button is pressed, or an event refers to the left button. (The
left button may be the right button on left-handed mice.)

— Qt .RightButton: The right button.

— Qt .MidButton: The middle button.

— Qt.MiddleButton: The middle button.
— Ot .XButtonl: The first X button.

— Qt .XButton2: The second X button.

* modifier (Qr.KeyboardModifier) — flags OR’ed together representing other modifier
keys also pressed. See keyboard modifiers.

* position (QPoint) — position of the mouse pointer.

* delay (int) — after the event, delay the test for this miliseconds (if > 0).

7.2 SignalBlocker

class pytestgt.wait_signal.SignalBlocker (timeout=1000, raising=False)
Returned by pytestqgt.gtbot.QtBot.waitSignal () method.

Variables

* timeout (inf) — maximum time to wait for a signal to be triggered. Can be changed before
wait () is called.

* signal_triggered (bool) — set to True if a signal (or all signals in case of
MultipleSignalBlocker) was triggered, or False if timeout was reached instead.
Until wait () is called, this is set to None.

* raising (bool) - If SignalTimeoutError should be raised if a timeout occurred.

wait ()
Waits until either a connected signal is triggered or timeout is reached.

20 Chapter 7. Reference

pytest-qt Documentation, Release 1.9.0

Raises ValueError if no signals are connected and timeout is None; in this case it would wait
forever.

connect (signal)
Connects to the given signal, making wait () return once this signal is emitted.

More than one signal can be connected, in which case any one of them will make wait () return.

Parameters signal — QtCore.Signal

7.3 MultiSignalBlocker

class pytestqgt.wait_signal .MultiSignalBlocker (timeout=1000, raising=False)
Returned by pytestqgt.gtbot.OtBot.waitSignals () method, blocks until all signals connected to it
are triggered or the timeout is reached.

Variables identical to SignalBlocker:
* timeout
* signal_triggered
* raising

wait ()
Waits until either a connected signal is triggered or timeout is reached.

Raises ValueError if no signals are connected and timeout is None; in this case it would wait
forever.

7.4 SignalTimeoutError

class pytestqt.wait_signal.SignalTimeoutError
New in version 1.4.

The exception thrown by pytestqgt.qgtbot.QtBot.waitSignal () if the raising parameter has been
given and there was a timeout.

7.5 Record

class pytestqgt.logging.Record (msg_type, message, ignored, context)
Hold information about a message sent by one of Qt log functions.

Variables
* message (str) — message contents.
* type (Qt.OtMsgType) — enum that identifies message type

* type_name (str) — type as string: "QtDebugMsg", "QtWarningMsg" or
"QtCriticalMsg".

* log_type_name (str) — type name similar to the logging package: DEBUG, WARNING
and CRITICAL.

* when (datetime.datetime) — when the message was captured

7.3. MultiSignalBlocker 21

pytest-qt Documentation, Release 1.9.0

* ignored (bool) — If this record matches a regex from the “qt_log_ignore” option.

* context — a namedtuple containing the attributes £ile, function, line. Only avail-
able in Qt5, otherwise is None.

22 Chapter 7. Reference

CHAPTER 8

Changelog

8.1 1.9.0

» Exception capturing now happens as early/late as possible in order to catch all possible exceptions (including
fixtures)(105). Thanks @The-Compiler for the request.

* Widgets registered by gtbot .addWidget are now closed before all other fixtures are tear down (106).
Thanks @The-Compiler for request.

* gtbot now has a new wait method which does a blocking wait while the event loop continues to run, similar
to QTest : :gWait. Thanks @The-Compiler for the PR (closes 107)!

* raise RuntimeError instead of ImportError when failing to import any Qt binding: raising the latter
causes pluggy in pytest-2.8 to generate a subtle warning instead of a full blown error. Thanks @Sheeo for
bringing this problem to attention (closes 109).

8.2 1.8.0

* pytest.mark.gt_log_ignore now supports an extend parameter that will extend the list of regexes
used to ignore Qt messages (defaults to False). Thanks @The-Compiler for the PR (99).

* Fixed internal error when interacting with other plugins that raise an error, hiding the original exception (98).
Thanks @The-Compiler for the PR!

* Now pytest—qgt is properly tested with PyQt5 on Travis-CI. Many thanks to @The-Compiler for the PR!

8.3 1.7.0

* PYTEST_QT_APT can now be set to pyqt 4v2 in order to use version 2 of the PyQt4 API. Thanks @montefra
for the PR (93)!

8.4 1.6.0

* Reduced verbosity when exceptions are captured in virtual methods (77, thanks @The-Compiler).

e pytestgt.plugin has been split in several files (74) and tests have been moved out of the pytestqgt
package. This should not affect users, but it is worth mentioning nonetheless.

23

https://github.com/pytest-dev/pytest-qt/issues/105
https://github.com/The-Compiler
https://github.com/pytest-dev/pytest-qt/issues/106
https://github.com/The-Compiler
https://github.com/The-Compiler
https://github.com/pytest-dev/pytest-qt/issues/107
https://github.com/Sheeo
https://github.com/pytest-dev/pytest-qt/issues/109
https://github.com/The-Compiler
https://github.com/pytest-dev/pytest-qt/issues/99
https://github.com/pytest-dev/pytest-qt/issues/98
https://github.com/The-Compiler
https://github.com/The-Compiler
https://github.com/montefra
https://github.com/pytest-dev/pytest-qt/issues/93
https://github.com/pytest-dev/pytest-qt/issues/77
https://github.com/The-Compiler
https://github.com/pytest-dev/pytest-qt/issues/74

pytest-qt Documentation, Release 1.9.0

8.5

8.6

8.7

QApplication.processEvents () is now called before and after other fixtures and teardown hooks, to
better try to avoid non-processed events from leaking from one test to the next. (67, thanks @The-Compiler).

Show Qt/PyQt/PySide versions in pytest header (68, thanks @The-Compiler!).

Disconnect SignalBlocker functions after its loop exits to ensure second emissions that call the internal functions
on the now-garbage-collected SignalBlocker instance (#69, thanks @The-Compiler for the PR).

1.5.1

Exceptions are now captured also during test tear down, as delayed events will get processed then and might
raise exceptions in virtual methods; this is specially problematic in PyQt 5. 5, which changed the behavior to
call abort by default, which will crash the interpreter. (65, thanks @The-Compiler).

1.5.0

Fixed log line number in messages, and provide better contextual information in Qt5 (55, thanks @The-
Compiler);

Fixed issue where exceptions inside a waitSignals or waitSignal with-statement block would be swal-
lowed and a SignalTimeoutError would be raised instead. (59, thanks @The-Compiler for bringing up
the issue and providing a test case);

Fixed issue where the first usage of gapp fixture would return None. Thanks to @gqmelo for noticing and
providing a PR;

New gt 1og now sports a context manager method, disabled (58). Thanks @The-Compiler for the idea and
testing;

1.4.0

Messages sent by gDebug, gWarning, gCritical are captured and displayed when tests fail, similar to
pytest-catchlog. Also, tests can be configured to automatically fail if an unexpected message is generated.

New method waitSignals: will block untill all signals given are triggered (thanks @The-Compiler for idea
and complete PR).

New parameter raising to waitSignals and waitSignals: when True will raise a
gtbot.SignalTimeoutError exception when timeout is reached (defaults to False). (thanks again
to @The-Compiler for idea and complete PR).

pytest—gt now requires pytest version >=2.7.

8.7.1 Internal changes to improve memory management

QApplication.exit () isno longer called at the end of the test session and the QApplication instance
is not garbage collected anymore;

QtBot no longer receives a QApplication as a parameter in the constructor, always referencing
OApplication.instance () now; this avoids keeping an extra reference in the gtbot instances.

deleteLlater is called on widgets added in Qt Bot . addWidget at the end of each test;

OApplication.processEvents () is called at the end of each test to make sure widgets are cleaned up;

24

Chapter 8. Changelog

https://github.com/pytest-dev/pytest-qt/issues/67
https://github.com/The-Compiler
https://github.com/pytest-dev/pytest-qt/issues/68
https://github.com/The-Compiler
https://github.com/The-Compiler
http://pyqt.sourceforge.net/Docs/PyQt5/incompatibilities.html#pyqt-v5-5
https://github.com/pytest-dev/pytest-qt/issues/65
https://github.com/The-Compiler
https://github.com/pytest-dev/pytest-qt/issues/55
https://github.com/The-Compiler
https://github.com/The-Compiler
https://github.com/pytest-dev/pytest-qt/issues/59
https://github.com/The-Compiler
https://github.com/gqmelo
https://github.com/pytest-dev/pytest-qt/issues/58
https://github.com/The-Compiler
https://pypi.python.org/pypi/pytest-catchlog
https://github.com/The-Compiler
https://github.com/The-Compiler

pytest-qt Documentation, Release 1.9.0

8.8 1.3.0

* pytest-qt now supports PyQt5!

Which Qt api will be used is still detected automatically, but you can choose one using the PYTEST_QT_APT
environment variable (the old PYTEST_QT_FORCE_PYQT is still supported for backward compatibility).

Many thanks to @jdreaver for helping to test this release!

8.9 1.23

* Now the module * ‘gt_compat ** no longer sets QString and QVariant APIs to 2 for PyQt, making it
compatible for those still using version 1 of the APL.

8.10 1.2.2

* Now it is possible to disable automatic exception capture by using markers or a pytest . ini option. Consult
the documentation for more information. (26, thanks @datalyze-solutions for bringing this up).

* QApplication instance is created only if it wasn’t created yet (21, thanks @fabioz!)

* addwidget now keeps a weak reference its widgets (#20, thanks @fabioz)

8.11 1.2.1

 Fixed 16: a signal emitted immediately inside a waitSignal block now works as expected (thanks @bau-
dren).

8.12 1.2.0

This version include the new wait Signal function, which makes it easy to write tests for long running computations
that happen in other threads or processes:

def test_long_computation (gtbot) :
app = Application()

Watch for the app.worker.finished signal, then start the worker.

with gtbot.waitSignal (app.worker.finished, timeout=10000) as blocker:
blocker.connect (app.worker.failed) # Can add other signals to blocker
app.worker.start ()
Test will wait here until either signal is emitted, or 10 seconds has elapsed

assert blocker.signal_triggered # Assuming the work took less than 10 seconds
assert_application_results (app)

Many thanks to @jdreaver for discussion and complete PR! (12, 13)

8.8. 1.3.0 25

http://pyqt.sourceforge.net/Docs/PyQt5/introduction.html
https://github.com/jdreaver
https://github.com/pytest-dev/pytest-qt/issues/26
https://github.com/datalyze-solutions
https://github.com/pytest-dev/pytest-qt/issues/21
https://github.com/fabioz
https://github.com/fabioz
https://github.com/pytest-dev/pytest-qt/issues/16
https://github.com/baudren
https://github.com/baudren
https://github.com/jdreaver
https://github.com/pytest-dev/pytest-qt/issues/12
https://github.com/pytest-dev/pytest-qt/issues/13

pytest-qt Documentation, Release 1.9.0

8.13 1.1.1

* Added stop as an alias for stopForInteraction (10, thanks @itghisi)

* Now exceptions raised in virtual methods make tests fail, instead of silently passing (11). If an exception is
raised, the test will fail and it exceptions that happened inside virtual calls will be printed as such:

Failed: Qt exceptions in virtual methods:

File "x:\pytest-gt\pytestgt_tests\test_exceptions.py", line 14, in event
raise ValueError ('mistakes were made')

ValueError: mistakes were made

File "x:\pytest—qgt\pytestqgt_tests\test_exceptions.py", line 14, in event
raise ValueError ('mistakes were made')

ValueError: mistakes were made

3 O B I Y O 3 T R O B 3 B 3 A

Thanks to @jdreaver for request and sample code!

* Fixed documentation for Qt Bot: it was not being rendered in the docs due to an import error.

8.14 1.1.0

Python 3 support.

8.15 1.0.2

Minor documentation fixes.

8.16 1.0.1

Small bug fix release.

8.17 1.0.0

First working version.

26 Chapter 8. Changelog

https://github.com/pytest-dev/pytest-qt/issues/10
https://github.com/itghisi
https://github.com/pytest-dev/pytest-qt/issues/11
https://github.com/jdreaver

Python Module Index

P

pytestqt, 3
pytestgt.logging, 21
pytestqgt.qgtbot, 17
pytestqgt.wait_signal, 20

27

pytest-qt Documentation, Release 1.9.0

28 Python Module Index

Index

A

addWidget() (pytestqt.qtbot.QtBot method), 17

C

connect() (pytestqt.wait_signal.SignalBlocker method),
21

K

keyClick() (pytestqt.qtbot.QtBot static method), 19
keyClicks() (pytestqt.qtbot.QtBot static method), 19
keyEvent() (pytestqt.qtbot.QtBot static method), 19
keyPress() (pytestqt.qtbot.QtBot static method), 19
keyRelease() (pytestqt.qtbot.QtBot static method), 19
keyToAscii() (pytestqt.qtbot.QtBot static method), 19

M

mouseClick() (pytestqt.qtbot.QtBot static method), 20
mouseDClick() (pytestqt.qtbot.QtBot static method), 20
mouseEvent() (pytestqt.qtbot.QtBot static method), 20
mouseMove() (pytestqt.qtbot.QtBot static method), 20
mousePress() (pytestqt.qtbot.QtBot static method), 20
mouseRelease() (pytestqt.qtbot.QtBot static method), 20
MultiSignalBlocker (class in pytestqt.wait_signal), 21

P

pytestqt (module), 3
pytestqt.logging (module), 21
pytestqt.qtbot (module), 17
pytestqt.wait_signal (module), 20

Q

QtBot (class in pytestqt.qtbot), 17

R

Record (class in pytestqt.logging), 21

S

SignalBlocker (class in pytestqt.wait_signal), 20
SignalTimeoutError (class in pytestqt.wait_signal), 21

stopForInteraction() (pytestqt.qtbot.QtBot method), 17

W

wait() (pytestqt.wait_signal.MultiSignalBlocker method),
21

wait() (pytestqt.wait_signal.SignalBlocker method), 20

waitForWindowShown() (pytestqt.qtbot.QtBot method),
17

waitSignal() (pytestqt.qtbot.QtBot method), 17

waitSignals() (pytestqt.qtbot.QtBot method), 18

29

	Introduction
	Requirements
	Installation
	Development
	Versioning

	Tutorial
	Qt Logging Capture
	Automatically failing tests when logging messages are emitted

	Waiting for threads, processes, etc.
	Exceptions in virtual methods
	A note about QApplication.exit()
	Reference
	QtBot
	SignalBlocker
	MultiSignalBlocker
	SignalTimeoutError
	Record

	Changelog
	1.9.0
	1.8.0
	1.7.0
	1.6.0
	1.5.1
	1.5.0
	1.4.0
	1.3.0
	1.2.3
	1.2.2
	1.2.1
	1.2.0
	1.1.1
	1.1.0
	1.0.2
	1.0.1
	1.0.0

	Python Module Index

